🔝 Deepseek reasoning 对话格式(类Chat Completions)
官方文档
📝 简介
Deepseek-reasoner 是 DeepSeek 推出的推理模型。在输出最终回答之前,模型会先输出一段思维链内容,以提升最终答案的准确性。API 向用户开放 deepseek-reasoner 思维链的内容,以供用户查看、展示、蒸馏使用。
💡 请求示例
基础文本对话 ✅
curl https://uiuiapi地址/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $UIUIAPI_API_KEY" \
  -d '{
    "model": "deepseek-reasoner",
    "messages": [
      {
        "role": "user",
        "content": "9.11 and 9.8, which is greater?"
      }
    ],
    "max_tokens": 4096
  }'响应示例:
{
  "id": "chatcmpl-123",
  "object": "chat.completion",
  "created": 1677652288,
  "model": "deepseek-reasoner",
  "choices": [{
    "index": 0,
    "message": {
      "role": "assistant",
      "reasoning_content": "让我一步步思考:\n1. 我们需要比较9.11和9.8的大小\n2. 两个数都是小数,我们可以直接比较\n3. 9.8 = 9.80\n4. 9.11 < 9.80\n5. 所以9.8更大",
      "content": "9.8 is greater than 9.11."
    },
    "finish_reason": "stop"
  }],
  "usage": {
    "prompt_tokens": 10,
    "completion_tokens": 15,
    "total_tokens": 25
  }
}流式响应 ✅
curl https://uiuiapi地址/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $UIUIAPI_API_KEY" \
  -d '{
    "model": "deepseek-reasoner",
    "messages": [
      {
        "role": "user",
        "content": "9.11 and 9.8, which is greater?"
      }
    ],
    "stream": true
  }'流式响应示例:
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"deepseek-reasoner","choices":[{"index":0,"delta":{"role":"assistant","reasoning_content":"让我"},"finish_reason":null}]}
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"deepseek-reasoner","choices":[{"index":0,"delta":{"reasoning_content":"一步步"},"finish_reason":null}]}
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"deepseek-reasoner","choices":[{"index":0,"delta":{"reasoning_content":"思考:"},"finish_reason":null}]}
// ... 更多思维链内容 ...
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"deepseek-reasoner","choices":[{"index":0,"delta":{"content":"9.8"},"finish_reason":null}]}
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"deepseek-reasoner","choices":[{"index":0,"delta":{"content":" is greater"},"finish_reason":null}]}
// ... 更多最终答案内容 ...
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"deepseek-reasoner","choices":[{"index":0,"delta":{},"finish_reason":"stop"}]}📮 请求
端点
POST /v1/chat/completions鉴权方法
在请求头中包含以下内容进行 API 密钥认证:
Authorization: Bearer $UIUIAPI_API_KEY其中 $DEEPSEEK_API_KEY 是您的 API 密钥。
请求体参数
messages
- 类型:数组
- 必需:是
到目前为止包含对话的消息列表。请注意,如果您在输入的 messages 序列中传入了 reasoning_content,API 会返回 400 错误。
model
- 类型:字符串
- 必需:是
- 值:deepseek-reasoner
要使用的模型 ID。目前仅支持 deepseek-reasoner。
max_tokens
- 类型:整数
- 必需:否
- 默认值:4096
- 最大值:8192
最终回答的最大长度(不含思维链输出)。请注意,思维链的输出最多可以达到 32K tokens。
stream
- 类型:布尔值
- 必需:否
- 默认值:false
是否使用流式响应。
不支持的参数
以下参数当前不支持:
- temperature
- top_p
- presence_penalty
- frequency_penalty
- logprobs
- top_logprobs
注意:为了兼容已有软件,设置 temperature、top_p、presence_penalty、frequency_penalty 参数不会报错,但也不会生效。设置 logprobs、top_logprobs 会报错。
支持的功能
- 对话补全
- 对话前缀续写 (Beta)
不支持的功能
- Function Call
- Json Output
- FIM 补全 (Beta)
📥 响应
成功响应
返回一个聊天补全对象,如果请求被流式传输,则返回聊天补全块对象的流式序列。
id
- 类型:字符串
- 说明:响应的唯一标识符
object
- 类型:字符串
- 说明:对象类型,值为 "chat.completion"
created
- 类型:整数
- 说明:响应创建时间戳
model
- 类型:字符串
- 说明:使用的模型名称,值为 "deepseek-reasoner"
choices
- 类型:数组
- 说明:包含生成的回复选项
- 属性:
- index: 选项索引
- message: 包含角色、思维链内容和最终回答的消息对象- role: 角色,值为 "assistant"
- reasoning_content: 思维链内容
- content: 最终回答内容
 
- finish_reason: 完成原因
usage
- 类型:对象
- 说明:token 使用统计
- 属性:
- prompt_tokens: 提示使用的 token 数
- completion_tokens: 补全使用的 token 数
- total_tokens: 总 token 数
📝 上下文拼接说明
在每一轮对话过程中,模型会输出思维链内容(reasoning_content)和最终回答(content)。在下一轮对话中,之前轮输出的思维链内容不会被拼接到上下文中,如下图所示:

注意
如果您在输入的 messages 序列中,传入了reasoning_content,API 会返回 400 错误。因此,请删除 API 响应中的 reasoning_content 字段,再发起 API 请求,方法如下方使用示例所示。
使用示例:
from openai import OpenAI
client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://uiuiapi地址")
# 第一轮对话
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = client.chat.completions.create(
    model="deepseek-reasoner",
    messages=messages
)
reasoning_content = response.choices[0].message.reasoning_content
content = response.choices[0].message.content
# 第二轮对话 - 只拼接最终回答content
messages.append({'role': 'assistant', 'content': content})
messages.append({'role': 'user', 'content': "How many Rs are there in the word 'strawberry'?"})
response = client.chat.completions.create(
    model="deepseek-reasoner", 
    messages=messages
)流式响应示例:
# 第一轮对话
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = client.chat.completions.create(
    model="deepseek-reasoner",
    messages=messages,
    stream=True
)
reasoning_content = ""
content = ""
for chunk in response:
    if chunk.choices[0].delta.reasoning_content:
        reasoning_content += chunk.choices[0].delta.reasoning_content
    else:
        content += chunk.choices[0].delta.content
# 第二轮对话 - 只拼接最终回答content
messages.append({"role": "assistant", "content": content})
messages.append({'role': 'user', 'content': "How many Rs are there in the word 'strawberry'?"})
response = client.chat.completions.create(
    model="deepseek-reasoner",
    messages=messages,
    stream=True
)